39 research outputs found

    Functional Implications of Impaired Control of Submaximal Hip Flexion Following Stroke

    Get PDF
    Introduction: We quantified sub-maximal torque regulation during low to moderate intensity isometric hip flexion contractions in individuals with stroke and the associations with leg function. Methods: 10 participants with chronic stroke and 10 controls performed isometric hip flexion contractions at 5%, 10%, 15%, 20%, and 40% of maximal voluntary contraction (MVC) in paretic, non-paretic, and control legs. Results: Participants with stroke had larger torque fluctuations (coefficient of variation, CV), for both the paretic and non-paretic legs, than controls (Pr2 =0.45) and Berg Balance Score (r2=0.38). At 5% MVC, there were larger torque fluctuations in the contralateral leg during paretic contractions compared with the control leg. Conclusions: Impaired low-force regulation of paretic leg hip flexion can be functionally relevant and related to control versus strength deficits post stroke

    Influence of Visual Feedback On Dynamic Balance Control in Chronic Stroke Survivors

    Get PDF
    Chronic stroke survivors have an increased incidence of falls during walking, suggesting changes in dynamic balance control post-stroke. Despite this increased incidence of falls during walking, balance control is often studied only in standing. The purpose of this study was to quantify deficits in dynamic balance control during walking, and to evaluate the influence of visual feedback on this control in stroke survivors. Ten individuals with chronic stroke, and ten neurologically intact individuals participated in this study. Walking performance was assessed while participants walked on an instrumented split-belt treadmill with different types of visual feedback. Dynamic balance control was quantified using both the extent of center of mass (COM) movement in the frontal plane over a gait cycle (COM sway), and base of support (step width). Stroke survivors walked with larger COM sway and wider step widths compared to controls. Despite these baseline differences, both groups walked with a similar ratio of step width to COM sway (SW/COM). Providing a stationary target with a laser reference of body movement reduced COM sway only in the stroke group, indicating that visual feedback of sway alters dynamic balance control post-stroke. These results demonstrate that stroke survivors attempt to maintain a similar ratio of step width to COM movement, and visual cues can be used to help control COM movement during walking post-stroke

    Identifying Trippers and Non-Trippers Based on Knee Kinematics During Obstacle-Free Walking

    Get PDF
    Trips are a major cause of falls. Sagittal-plane kinematics affect clearance between the foot and obstacles, however, it is unclear which kinematic measures during obstacle-free walking are associated with avoiding a trip when encountering an obstacle. The purpose of this study was to determine kinematic factors during obstacle-free walking that are related to obstacle avoidance ability. It was expected that successful obstacle avoidance would be associated with greater peak flexion/dorsiflexion and range of motion (ROM), and differences in timing of peak flexion/dorsiflexion during swing of obstacle-free walking for the hip, knee and ankle. Three-dimensional kinematics were recorded as 35 participants (young adults age 18–45 (N = 10), older adults age 65+ without a history of falls (N = 10), older adults age 65+ who had fallen in the last six months (N = 10), and individuals who had experienced a stroke more than six months earlier (N = 5)) walked on a treadmill, under obstacle-free walking conditions with kinematic features calculated for each stride. A separate obstacle avoidance task identified trippers (multiple obstacle contact) and non-trippers. Linear discriminant analysis with sequential feature selection classified trippers and non-trippers based on kinematics during obstacle-free walking. Differences in classification performance and selected features (knee ROM and timing of peak knee flexion during swing) were evaluated between trippers and non-trippers. Non-trippers had greater knee ROM (P = .001). There was no significant difference in classification performance (P = .193). Individuals with reduced knee ROM during obstacle-free walking may have greater difficulty avoiding obstacles

    Laterality of the Activation of the Vastus Lateralis Muscle in Females with Parkinson\u27s Disease during the Medication State Compared with Healthy Controls

    Get PDF
    This study quantified the laterality of motor unit activation properties in females with Parkinson’s disease during force production (low to high-intensity contraction) using high-density surface electromyography. Sixteen females with Parkinson’s disease (age = ± 7.6 years, disease duration = 4.9 ± 5.1 years) and 14 healthy female subjects (age = 68.6 ± 3.6 years) performed submaximal ramp-up contractions during isometric knee extension. High-density surface electromyography signals were recorded from both vastus lateralis muscles. The level of heterogeneity was calculated in the spatial distribution patterns of the high-density surface electromyography signals to determine the modified entropy, coefficient of variation of the root mean square and correlation coefficient to evaluate motor unit activation properties. Pearson’s correlation coefficients were calculated to examine the relationships between disease severity and the root mean square and electromyography variables. The root mean square value and heterogeneity were significantly higher and lower on the more-affected side in females with Parkinson’s disease than on the contralateral side in females with Parkinson’s disease or either side in control subjects (p \u3c 0.05). Females with Parkinson’s disease that exhibited temporal changes of spatial motor unit activation properties showed significant laterality when compared to healthy control subjects in both the low and high-intensity contractions. Moderate-to-strong correlations were observed between disease severity and root mean square and electromyography variables in females with Parkinson’s disease (r\u3e 0.6, p \u3c 0.001). The laterality of motor unit activation properties was compared between the subjects with Parkinson’s disease and the control subjects. The findings suggest that females with Parkinson’s disease have asymmetrical motor unit activation properties, independent of the magnitude of force production

    Two Weeks of Ischemic Conditioning Improves Walking Speed and Reduces Neuromuscular Fatigability in Chronic Stroke Survivors

    Get PDF
    This pilot study examined whether ischemic conditioning (IC), a noninvasive, cost-effective, and easy-to-administer intervention, could improve gait speed and paretic leg muscle function in stroke survivors. We hypothesized that 2 wk of IC training would increase self-selected walking speed, increase paretic muscle strength, and reduce neuromuscular fatigability in chronic stroke survivors. Twenty-two chronic stroke survivors received either IC or IC Sham on their paretic leg every other day for 2 wk (7 total sessions). IC involved 5-min bouts of ischemia, repeated five times, using a cuff inflated to 225 mmHg on the paretic thigh. For IC Sham, the cuff inflation pressure was 10 mmHg. Self-selected walking speed was assessed using the 10-m walk test, and paretic leg knee extensor strength and fatigability were assessed using a Biodex dynamometer. Self-selected walking speed increased in the IC group (0.86 ± 0.21 m/s pretest vs. 1.04 ± 0.22 m/s posttest, means ± SD; P\u3c 0.001) but not in the IC Sham group (0.92 ± 0.47 m/s pretest vs. 0.96 ± 0.46 m/s posttest; P= 0.25). Paretic leg maximum voluntary contractions were unchanged in both groups (103 ± 57 N·m pre-IC vs. 109 ± 65 N·m post-IC; 103 ± 59 N·m pre-IC Sham vs. 108 ± 67 N·m post-IC Sham; P = 0.81); however, participants in the IC group maintained a submaximal isometric contraction longer than participants in the IC Sham group (278 ± 163 s pre-IC vs. 496 ± 313 s post-IC, P = 0.004; 397 ± 203 s pre-IC Sham vs. 355 ± 195 s post-IC Sham; P = 0.46). The results from this pilot study thus indicate that IC training has the potential to improve walking speed and paretic muscle fatigue resistance poststroke

    Swallow Strength Training Exercise For Elderly: A Health Maintenance Need

    Get PDF
    Background: Recent studies have shown high prevalence of oropharyngeal dysphagia associated with frailty‐ and age‐related muscle weakness. Strength training exercises have been advocated for locomotive health maintenance in the elderly and have shown positive outcomes. As muscles involved in oropharyngeal phase of swallowing are also comprised of striated muscles, the aim of this study was to determine biomechanical effect of a novel resistance exercise program, Swallowing Against Laryngeal Restriction (SALR), on pharyngeal phase swallowing in the healthy elderly. Methods: A total of 28 volunteers (75 + 7 years; 17 females) with no complaint of dysphagia were studied using video fluoroscopy before and after 6 weeks of the swallow strength training exercise. Eighteen of these volunteers also underwent high‐resolution pharyngeal manometry non‐concurrent with fluoroscopy. Ten additional volunteers (81 + 6 years; 9 females) were studied by videofluoroscopy before and after 6 weeks of a sham exercise. Key Results: Swallow resistance exercise but not the sham exercise resulted in a significant increase in maximum upper esophageal sphincter opening (P \u3c .01), superior and anterior laryngeal excursion (P \u3c .01) as well as posterior pharyngeal wall thickness (P \u3c .01). Resistance exercise but not sham exercise also resulted in a significant increase in deglutitive pharyngeal contractile integral (P \u3c .01). Conclusions & Inferences: Strength training of muscles involved in the pharyngeal phase of swallowing using the swallowing against laryngeal restriction technique is feasible and significantly improves key physiologic features of the pharyngeal phase of swallowing. These findings provide the basis for consideration of developing an exercise‐based swallow health maintenance program for the elderly swallow health maintenance program for the elderly

    The Effect of a Portable Electrical Muscle Stimulation Device at Home on Muscle Strength and Activation Patterns in Locomotive Syndrome Patients: A Randomized Control Trial

    Get PDF
    The aim of the present study was to quantify the effect of electrical muscle stimulation (EMS) intervention using a portable device on muscle strength and activation patterns in locomotive syndrome. Nineteen women were randomly assigned to the intervention group (n = 10; age = 71–82 years) and control group (n = 9; age = 70–84 years). Participants in the intervention group used a portable EMS device to stimulate the bilateral quadriceps muscles for 8 weeks (23 min/5 days/week). To understand the effects of EMS, the following measurements were made at baseline, 8 weeks, and 12 weeks: locomotive syndrome assessment score, knee extensor strength, vastus lateralis muscle activation patterns during a maximal isometric knee extension contraction using multi-channel surface electromyography, and muscle thickness. The locomotive syndrome assessment, muscle strength, muscle thickness, and muscle activity patterns in the intervention group were significantly different to control after 8 weeks (p \u3c 0.05). However, these results were not sustained at 12 weeks. EMS increased locomotor assessment scores, which were accompanied by enhanced muscle strength, increased muscle thickness, and changes in muscle activation patterns in locomotive syndrome patients. These results suggest that EMS is potentially useful for improving muscle neural activation and force output in locomotive syndrome

    Ischemic Conditioning Increases Strength and Volitional Activation of Paretic Muscle in Chronic Stroke: A Pilot Study

    Get PDF
    7siIschemic conditioning (IC) on the arm or leg has emerged as an intervention to improve strength and performance in healthy populations, but the effects on neurologic populations are unknown. The purpose of this study was to quantify the effects of a single session of IC on knee extensor strength and muscle activation in chronic stroke survivors. Maximal knee extensor torque measurements and surface EMG were quantified in 10 chronic stroke survivors (>1 year post-stroke) with hemiparesis before and after a single session of IC or Sham on the paretic leg. IC consisted of five minutes of compression with a proximal thigh cuff (inflation pressure = 225 mmHg for IC or 25 mmHg for Sham) followed by five minutes of rest. This was repeated five times. Maximal knee extensor strength, EMG magnitude, and motor unit firing behavior were measured before and immediately after IC or Sham. IC increased paretic leg strength by 10.6plus minus8.5 Nm while no difference was observed in the Sham group (change in Sham = 1.3plus minus2.9 Nm; p = 0.001 IC vs. Sham). IC-induced increases in strength were accompanied by a 31plus minus15% increase in the magnitude of muscle EMG during maximal contractions and a 5% decrease in motor unit recruitment thresholds during sub-maximal contractions. Individuals who had the most asymmetry in strength between their paretic and non-paretic legs had the largest increases in strength (r2= 0.54). This study provides evidence that a single session of IC can increase strength through improved muscle activation in chronic stroke survivors.openembargoed_20190204Hyngstrom, Allison S; Murphy, Spencer A; Nguyen, Jennifer; Schmit, Brian D; Negro, Francesco; Gutterman, David D; Durand, Matthew JHyngstrom, Allison S; Murphy, Spencer A; Nguyen, Jennifer; Schmit, Brian D; Negro, Francesco; Gutterman, David D; Durand, Matthew

    Energy Cost of Slow and Normal Gait Speeds in Low and Normally Functioning Adults

    Get PDF
    Objective Slow walking speed paired with increased energy cost is a strong predictor for mortality and disability in older adults but has yet to be examined in a heterogeneous sample (ie, age, sex, disease status). The aim of this study was to examine energy cost of slow and normal walking speeds among low- and normal-functioning adults. Design Adults aged 20–90 yrs were recruited for this study. Participants completed a 10-m functional walk test at a self-selected normal walking speed and were categorized as low functioning or normal functioning based on expected age- and sex-adjusted average gait speed. Participants completed two successive 3-min walking stages, at slower than normal and normal walking speeds, respectively. Gas exchange was measured and energy cost per meter (milliliter per kilogram per meter) was calculated for both walking speeds. Results Energy cost per meter was higher (P \u3c 0.0001) in the low-functioning group (n = 76; female = 59.21%; mean ± SD age = 61.13 ± 14.68 yrs) during the slower than normal and normal (P \u3c 0.0001) walking speed bouts compared with the normal-functioning group (n = 42; female = 54.76%; mean ± SD age = 51.55 ± 19.51 yrs). Conclusions Low-functioning adults rely on greater energy cost per meter of walking at slower and normal speeds. This has implications for total daily energy expenditure in low-functioning, adult populations

    Oscillations in Neural Drive and Age-related Reductions in Force Steadiness with a Cognitive Challenge

    Get PDF
    A cognitive challenge when imposed during a low-force isometric contraction will exacerbate sex- and age-related decreases in force steadiness, but the mechanism is not known. We determined the role of oscillations in the common synaptic input to motor units on force steadiness during a muscle contraction with a concurrent cognitive challenge. Forty-nine young adults (19–30 yr; 25 women, 24 men) and 36 old adults (60–85 yr; 19 women, 17 men) performed a cognitive challenge (counting backward by 13) during an isometric elbow flexion task at 5% of maximal voluntary contraction. Single-motor units were decomposed from high-density surface EMG recordings. For a subgroup of participants, motor units were matched during control and cognitive challenge trials, so the same motor unit was analyzed across conditions. Reduced force steadiness was associated with greater oscillations in the synaptic input to motor units during both control and cognitive challenge trials (r = 0.45–0.47, P \u3c 0.01). Old adults and young women showed greater oscillations in the common synaptic input to motor units and decreased force steadiness when the cognitive challenge was imposed, but young men showed no change across conditions (session × age × sex, P \u3c 0.05). Oscillations in the common synaptic input to motor units is a potential mechanism for altered force steadiness when a cognitive challenge is imposed during low-force contractions in young women and old adults
    corecore